
 - 1 -

Am I Evil?? PROC TEMPLATE Exposed
Kevin P. Delaney MPH, Northrop-Grumman Mission Systems, Atlanta, GA

Abstract:
As more and more people begin to use the Output Delivery
System (ODS) more people also want to modify the default output
it produces. To do this properly one needs to become familiar
with PROC TEMPLATE. Unfortunately PROC TEMPLATE has
developed a reputation for being a scary and difficult procedure.
Some have even gone so far as to call him “EVIL.” In this paper
we will get to know PROC TEMPLATE a little better, and you will
learn how to create and modify both STYLE and TABLE
templates, and hopefully become more comfortable with PROC
TEMPLATE. All examples were developed with SAS 8.2 on the
WINPRO platform, but should be extendable to other SAS
versions and operating systems. This paper assumes some
knowledge of ODS and of SAS procedures typically used to
produce output.

Introduction

Since it’s release as part of SAS 7.0, more and more people are
starting to use the Output Delivery System (ODS). Many people
would also like to be able to modify the default output that is
produced by ODS. As a result more and more SAS users are
also coming into contact with PROC TEMPLATE. If you are one
of those SAS users, you may have found that PROC TEMPLATE
can be tricky, and/or hard to deal with. Some of my colleagues
have gone so far as to characterize this procedure as “EVIL.” I
sat down with PROC TEMPLATE for awhile to get an inside look
at how he thinks, and acts. This has lead me to the conclusion
that PROC TEMPLATE is not evil, but he is oft misunderstood.
Hopefully this paper will give you a better insight into PROC
TEMPLATE, and clear up some of the confusion that has been
giving him a bad rap!

Why do we want to get to know PROC TEMPLATE at all? PROC
TEMPLATE is VERY shy and modest. Truth is, he’d probably like
it better if everyone would just leave him alone. SAS Institute
provides 15 default STYLE templates with SAS 8.2, often
choosing a different template is all you really need to do to
change the way your output looks. But, as far as the appearance
of output is concerned, PROC TEMPLATE is the main man.
Every time you generate SAS output you are using at least one
template, most times you are using two, and if you ever want to
modify one of those templates (or create a new one) you will need
to do it with PROC TEMPLATE.

What, exactly is a template? Part of the reason PROC
TEMPLATE is so misunderstood is due to the fact that he has a
split personality. There are actually several different types of
templates. These have different roles in the appearance of SAS
output, and have somewhat different PROC TEMPLATE code
that defines them. STYLE templates control the outer
appearance of the SAS output, they are the wardrobe, hair and
makeup on SAS’s output stage. The core of SAS’s output
performance is controlled by TABLE templates. Every procedure
except the four reporting procedures (PRINT, FREQ, REPORT
and TABULATE) has a TABLE template, which defines the
structure of the output. Within or attached to a TABLE template
can be several COLUMN and/or HEADER templates, which
describe particular parts of an output table. These are the main
templates that you would want to use or modify to change the way
your output looks.

 (NOTE: There is one other type of template that will gain
increasing importance in SAS 9+, the STATGRAPH template.
This type of template will be used in conjunction with the
statistical graphics capabilities that will be available in upcoming
versions of SAS. Once they become production (SAS 9.1) they
will be valuable tools for creating high quality graphics to go along

with the tabular output of the SAS/STAT procedures. They
actually exist in SAS 9, but the syntax will change quite a bit
between the experimental implementation in SAS 9 and what will
be production for SAS 9.1, and therefore I will not discuss them
any further in this paper.)

STYLE Templates

STYLE templates are the most obvious, well known and well
understood of all the template types. Anytime you produce output
to an ODS destination other than the LISTING, you are using a
STYLE template. Table 1 below shows the default style template
that is used by the three most common ODS destinations.

Destination Default Style
ODS HTML Default

ODS PRINTER (PDF,
PS etc.) PRINTER

ODS RTF RTF
TABLE 1: Default styles used by the three most commonly
used ODS destinations.

In version 8.2 of SAS there are 15 default styles that you may
choose from, in Version 9 there will be at least 18 new ones in
addition to all those from Version 8.2. If you don’t like the way
any of these styles look, you can create one of your own.
However, because of all the parts of a STYLE template, this can
be quite complicated. Probably the easiest way to begin to make
a style is to take a look at the ones SAS gives you and modify
them to your liking.

In order to see the attributes of a particular style (or to copy them
to your Program editor to make changes), highlight the results
window in your SAS session, and either RIGHT CLICK and select
Templates, or go to the View dropdown menu and select
Templates.

Figure 1: Viewing Templates

Figure 2 shows the contents of the TEMPLATE window. You will
notice there will be at least two directories, SASUSER.TEMPLAT
and SASHELP.TMPLMST. These are called TEMPLATE
STORES and the two listed above are created by default. We will

 - 2 -

see how to create your own TEMPLATE STORE, and how to tell
SAS which TEMPLATE STORES to use, in a little bit.
SASHELP.TMPLMST contains all of the templates written and
provided by SAS. SASUSER.TEMPLAT is the default location for
new templates that you create, and for any templates that you
modify (even a TEMPLATE master would not want to overwrite
the templates that SAS wrote…). If you click on
SASHELP.TMPLMST you will see there are several folders within
it, listed alphabetically from BASE to TAGSETS. Nearly all of the
templates listed are NOT STYLE templates, they are mostly
TABLE, COLUMN or HEADER Templates. This makes sense
when you remember that all but four of the SAS Procedures have
their own TABLE templates, there are a lot of SAS Procs, so there
are a lot of TABLE templates. The number of table templates is
exacerbated by the fact that most procedures produce more than
one output object (table) so they need more than one TABLE
template. But we are supposed to be talking about STYLE
templates now, so, which folder do you think contains the STYLE
templates, that’s right, the one called STYLES. If you click on the
Styles folder you will get a screen that looks a lot like Figure 2,
with the contents of the Styles folder listed in the right half of the
screen. These are the 15+ STYLE templates that SAS ships as
part of SAS 8.2. If you double click on a particular style you will
open the TEMPLATE Viewer and be able to look at the entire
STYLE Template. Let’s click on the PRINTER template to check
it out.

Figure 2: Selecting and viewing a style

Here we finally get our first look at the building blocks of a STYLE
template, the PROC TEMPLATE procedure that creates it. The
first three lines of this procedure are probably the most important
to us at this point:

proc template;
 define style Styles.Printer;
 parent = styles.default;

The first line invokes the TEMPLATE procedure. The second line
gives a name to the style being created; it tells us that this PROC
TEMPLATE contains the style definition for STYLES.PRINTER.
Notice that we are using the TEMPLATE procedure to DEFINE a
STYLE, we will see later that this DEFINE statement is used for
all templates, so it is necessary to tell PROC TEMPLATE that we
want to work with his STYLE template personality, rather than a
TABLE template or something else. This STYLE definition
extends all the way to the END statement before a RUN
statement which ends the procedure. Within the STYLE
Definition there are two levels that divide the template into
sections, STYLE elements and their STYLE attributes. Figure 3
shows part of a relatively short STYLE definition called
MYNEWSTYLE. Within this Style definition are 3 Style elements,

namely FONTS, COLOR_LIST and COLORS. Look at the way
the syntax lays out for the COLOR_LIST Style element:
replace color_list /
'link' = blue
'bgH' = white
'fg' = Dark blue
‘bg' = white
‘fg2' = Red
 ;

Notice that all the STYLE attributes are listed as part of the same
statement, that is the STYLE element starts with Replace style-
element name, then lists all the changes to Style attributes, before
reaching a semi-colon that ends the definition of the STYLE
element. The syntax to set a given Style attribute is simply:

Style attribute = Value

Even in this short STYLE template there are an awful lot of Style
attributes being set, imagine how many more would be necessary
to create your own TEMPLATE from scratch! Ok, don’t imagine,
the entire DEFAULT template takes up 7 single space pages,
even with Arial Narrow 8pt font! This is what I was referring to
when I said it would be difficult to create a complete style
template without copying some information from an existing
template!!!

proc template;
 define style mynewstyle ;
 parent = styles.default;
 replace fonts /
 'TitleFont2' = ("Times New Roman",8pt,Bold)
 'TitleFont' = ("Times New Roman",8pt,Bold)
 'StrongFont' = ("Times New Roman",8pt,Bold)
 'EmphasisFont' = ("Times New Roman",8pt,Italic)
 'FixedEmphasisFont' = ("Courier New, Courier",7.5pt,Italic)
 ‘FixedStrongFont' = ("Courier New, Courier",7.5pt,Bold)
 'FixedHeadingFont' = ("Courier New, Courier",7.5pt,Bold)
 'BatchFixedFont' = ("SAS Monospace, Courier New, Courier",4.5pt)
'FixedFont' = ("Courier New, Courier",7.5pt)
'headingEmphasisFont' = ("Times New Roman",8pt,Bold Italic)
'headingFont' = ("Times New Roman",28pt,Bold Italic)
 'docFont' = ("Times New Roman",26pt, Italic);

replace color_list /
'link' = blue
'bgH' = white
'fg' = Dark blue
‘bg' = white
‘fg2' = Red
 ;
replace colors
 "Abstract colors used in the default style" /
 'headerfgemph' = color_list('fg')
 'headerbgemph' = color_list('bgH')
 'headerfgstrong' = color_list('fg')
 'headerbgstrong' = color_list('bgH')
 'headerfg' = color_list('fg2')
 'headerbg' = color_list('bgH')
 'datafgemph' = color_list('fg')
 'databgemph' = color_list('bg')
 'datafgstrong' = color_list('fg')
 'databgstrong' = color_list('bg')
 'notebg' = color_list('bg')
 'bylinefg' = color_list('fg')
 'bylinebg' = color_list('bg')
 'captionfg' = color_list('fg')
 'captionbg' = color_list('bg')
 'proctitlefg' = color_list('fg')
 'proctitlebg' = color_list('bg')
 'titlefg' = color_list('fg')
 'titlebg' = color_list('bg')
 'systitlefg' = color_list('fg')
 'systitlebg' = color_list('bg')

Style Definition
(extends to the
END at the top of
the next page!)

Style
Elements

Style
Attributes

Color_list Style element
and it’s attributes

 - 3 -

 'Conentryfg' = color_list('fg')
 'Confolderfg' = color_list('fg')
 'Contitlefg' = color_list('fg')
 'link2' = color_list('link')
 'link1' = color_list('link')
 'contentfg' = color_list('fg')
 'contentbg' = color_list('bg')
 'docfg' = color_list('fg')
 'docbg' = color_list('bg');
end;
run;

FIGURE 3: Sample PROC TEMPLATE STYLE definition,
showing parts of a STYLE TEMPLATE

A PROC PRINT using the Style above produces the following in
the PDF destination.

Figure 4: PDF with Fonts modified using PROC TEMPLATE

Inheritance

No, this has nothing to do with Grandpa’s Money; we are talking
STYLE templates here! One of the things that makes PROC
TEMPLATE such a confusing little procedure is the complexity of
the links between templates which occur as a result of
INHERITANCE. Perhaps the most important and one of the most
confusing lines in this STYLE template is the one which says
PARENT=STYLES.DEFAULT. This tells SAS what template
STYLES.PRINTER inherits its attributes from.
STYLES.DEFAULT has many attributes that you may never need
or want to change. STYLES.PRINTER INHERITS a lot of these
attributes directly from STYLES.DEFAULT. For me the easiest
way to understand inheritance in STYLE templates is this,
anything that is not explicitly changed in the new template will be
inherited from the parent. That is, any attribute which not listed in
STYLES.PRINTER will be set according to its definition in
STYLES.DEFAULT.

There is also Inheritance of style attributes within a given
template. Look again at the COLOR_LIST Style element from
Figure 3:

replace color_list /
'link' = blue
'bgH' = white
'fg' = Dark blue
‘bg' = white
‘fg2' = Red
 ;

Notice how the colors are assigned to aliases such as ‘link,’ ‘bgH’
and ‘fg’? Usually there are going to be a lot more STYLE
elements that need a color defined for them, then there are colors
in document. For instance in our PROC PRINT example
(FIGURE 4) the data in the cells, and the gridlines are the same
color blue. Rather than having to go in and change the colors of
each STYLE element (remember how many there are in

STYLES.DEFAULT) we assign colors references like ‘link.’ But
we don’t stop there, look at the COLORS element:

replace colors
 "Abstract colors used in the default style" /
 'headerfgemph' = color_list('fg')
 'headerbgemph' = color_list('bgH')
 'headerfgstrong' = color_list('fg')
 'headerbgstrong' = color_list('bgH')

In this syntax SAS is saying, in order to assign a color to the alias
‘headerfgemph’ use the value of ‘fg’ from the COLOR_LIST style element. Then
further down in the Template, anywhere that you see ‘headerfgemph’ you would
get COLOR_LIST(‘fg’) which in our case is DARK BLUE.

For example, the style element Headeremphasis uses ‘headerfgemph’ as its
foreground color:
Style HeaderEmphasis from Header
 "Controls emphasized table header cells." /
 foreground = colors('headerfgemph')
 background = colors('headerbgemph')
 font = fonts('EmphasisFont');

This STYLE element, three layers of inheritance away from where
we actually set (changed) a color, is where the Value DARK
BLUE actually gets assigned to the foreground for the
HEADEREMPHASIS style. There is something else going on
here as well. The syntax Style HeaderEmphasis from Header
tells SAS to inherit more attribute values from another section of
the template. In this case HeaderEmphasis gets most of its
attributes from the HEADER Style element, the only difference
between HeaderEmphasis and Header will be in the values we
changed for Foreground (font) color, Background color and font.
The purpose of this is to keep the size of the template small; you
don’t have to retype attributes of the Style element HEADER, if
you aren’t going to change them. However, this is the main thing
about PROC TEMPLATE that makes it hard to understand,
because attributes in the HEADER are inherited from another
style element, and some of those attributes in that style element
are inherited from somewhere else, you may have to really dig
around in the TEMPLATE to figure out which style attributes are
coming from where, and what you really are looking to change.

In my opinion Inheritance is the main reason people don’t like
PROC TEMPLATE, they don’t take enough time to understand
where he is coming from. As I have tried to show you above,
there are many different types of inheritance all working
simultaneously in a given Style template, so it might be a good
time to stop and summarize inheritance, before we move on to
some examples.

The real issue in figuring out all this inheritance stuff is
understanding that there are really three different types of
inheritance, and then knowing the order in which they are
resolved:

1) Inheritance from a Parent Style, as assigned with a
PARENT= statement

2) Inheritance from another Style element within a given
TEMPLATE, via the StyleA from StyleB construct

3) Use of an alias to refer to a Style attribute value from
another Style element (e.g. Color_LIST(‘fg’) as part of a
given Style attribute assignment.

There is one other thing about inheritance that I haven’t touched
on yet. You may have noticed that all of the Style elements in the
example in FIGURE 3 begin with a REPLACE statement, while
the ROWHEADER example above begins with a STYLE
statement. These two ways of defining a Style element are
fundamentally different, and directly related to the order of
resolution of inheritance issues.

 - 4 -

Order of Inheritance resolution:

1) PROC TEMPLATE takes any Style elements in the
Child STYLE definition that were defined with a
REPLACE statement, and puts them into the PARENT
STYLE as is

2) PROC TEMPLATE resolves all the inheritance issues
defined in the PARENT template

3) PROC TEMPLATE applies any new STYLE element
changes as defined in the CHILD by a STYLE
statement

To see how this works, lets break down the color changes we
made in the PROC TEMPLATE code in Figure 3. First, what
would happen if ‘REPLACE COLOR_LIST’ were instead ‘STYLE
COLOR_LIST’?

1) SAS looks for a REPLACE statement, but doesn’t find
one

2) SAS resolves all of the inheritances in the PARENT
template, in this case STYLES.DEFAULT. What does
this mean? Anywhere that SAS sees, for example
BACKGROUND = colors(“Headerfgemph”) it first sticks
in Color_LIST(“fg”) and then finally the color that
corresponds to “FG” in the color list IN THE DEFAULT
template.

3) SAS goes ahead and makes the changes it finds in
STYLE statements in the CHILD TEMPLATE.

So if we had only said STYLE COLOR_LIST from COLOR_LIST
SAS would have made the changes to COLOR_LIST AFTER the
color attributes of individual style elements (such as
HEADEREMPHASIS) had been defined (in step 2).

You may have noticed that there is a lot of code included in
FIGURE 3 to change the color and typeface of two fonts. The
only actual changes that we made to the Template are shown in
RED. The problem is, because of the order of resolution
described above, we have to REPLACE the color and font Style
elements rather than modify them. This means that in Step 1
above, SAS does find a REPLACE statement in the child, so that
whatever is written there goes into the PARENT templates
corresponding STYLE ELEMENT Definition. All of the color and
font aliases listed in FIGURE 3 are used at some point by the
template STYLES.DEFAULT. So, if we had only included the
aliases we wanted to change, (e.g. 'headingFont' = ("Times New
Roman",28pt,Bold Italic)) SAS would have generated errors as it
moved through STEP 2 and resolved all the inheritances in the
default template. For example if we had only included
‘Headingfont’ in our REPLACE font STYLE element, when
another STYLE element called for fonts(‘Strongfont’) SAS would
have looked for it in the FONTS STYLE element, and, not finding
it, generated a error.

So in our case, since we were modifying the Fonts and colors in
FIGURE 3, we had to list all of the fonts and all of the colors, in
order to actually change two of them. This isn’t really a big deal
because you can copy and paste the attributes you want to
change from STYLES.DEFAULT.

After this revelation, I was starting to understand that PROC
TEMPLATE was a very complex procedure indeed. I decided to
push on and try to get him to explain some of his other interesting
features. I asked PROC TEMPLATE what other issues he
thought people had with him, what other misunderstandings did
he want to resolve. Feeling comfortable opening up to me, he
gave me a few more examples.

RELATIVE FONTS

PROC TEMPLATE seemed distressed that people always got
mad at him for not giving them the fonts they asked for when they
were generating HTML files, they would give him one font size,
and get two different ones depending on whether they were

making a PDF or an HTML file. He lamented, “You don’t know
how many times I have heard, ‘Why is a 28pt font not a 28pt
font.’” He explained to me that this is not really his fault.

Through SAS 8.2 PROC TEMPLATE produces HTML documents
written to be compliant with HTML version 3.2. In this version of
the HTML standard, there are no absolute FONT sizes
associated with a given object, only a relative size can be
assigned. This means that even if you specify a font size of 28pt
in your STYLE template, SAS will convert it to a relative size
when rendering the HTML. Usually this is the relative size 7,
which will render a font somewhere between 30pt and 34pt
depending on the browser and will then still be affected by the
Text Size option set on an individual’s computer. This can prove
very annoying if you have a file that barely fits on a page in the
PDF or RTF destination which you will lose control of in the HTML
destination! In the latest HTML standard, HTML 4.0, absolute
Font sizes can be used as part of a Cascading Style Sheet (CSS),
allowing you to gain complete control of font sizes in HTML
output. HTML 4.0 will become the default in SAS 9, but you can
implement CSS in SAS 8.2. On your ODS HTML statement add
the Stylesheet option:

ODS HTML body="PATH to a file.htm" stylesheet;
*PROC(S) that produce output;
ODS HTML close;

This, combined with listing absolute font sizes in your style
template, will give you control of the font size in the HTML you
create, regardless of how it is ultimately viewed by a user.

One other note on FONTS: You may have noticed that there
were several different font faces listed for a couple of the aliases
assigned in the FONTS style attribute (e.g. 'BatchFixedFont' = ("SAS
Monospace, Courier New, Courier",4.5pt)). This is good practice when
designing STYLE templates for HTML files. HTML does not
embed fonts in a document, it keeps track of the name of the font,
and renders the output in that font, if it is available on the
computer of the person viewing the file. Although there are some
fonts that will be available on almost every computer (Arial,
Helvetica, Times New Roman) knowing whether a given font is
available for a given viewer is nearly impossible. Thus it is good
practice to give the browser some choices to pick from when it
comes time to render a font.

BORDERS and RULES

In addition to colors and fonts, we can also change the RULES in
the table, and/or the borders and shading. PROC TEMPLATE
told me that getting this to work correctly is another point of
contention that people have with him. This is due to two
competing Style attributes that can affect the way RULES show
up: the CELLSPACING = attribute and the RULES = attribute.
CELLSPACING is the sneaky one here, if it is anything other than
zero the background color of the table will show through in the
spaces between the cells. RULES = generally works the way it is
supposed to, with a choice of COLS, ROWS, ALL, NONE, and
GROUPS as settings. With CELLSPACING set to 0, RULES =
COLS will put lines between the columns, RULES= ROWS will
place them between rows, and RULES=GROUPS will place a
divider between the Header and the table area of the table.
(Hopefully ALL and NONE are self-explanatory).

RULES= only effects the lines WITHIN the table, however, to
affect the table border, you would use the FRAME = Attribute.
FRAME = can take values of HSIDES, VSIDES, ABOVE ,
BELOW, LHS, RHS, and BOX. Box would put a border all the
way around a table, HSIDES above and below the table, VSIDES
on the left and right side, and the others on one specific side only.
Setting FRAME= VOID will make sure no frame appears around
the table. You may specify a single color for the border with the
BORDERCOLOR= attribute, or a two color scheme with the
BORDERCOLORLIGHT = and BORDERCOLORDARK =
attributes. The code below illustrates some of these options,

 - 5 -

Comments 1-7 describe what is going on in particularly important
places, FIGURE 5 shows the results of running this code:

Proc template;
define style Styles.bordersnrules;
 parent = Styles.Default;
/* Font changes */
replace fonts /
 'TitleFont2' = ("Helvetica, Helv",16pt,Bold Italic)
 'TitleFont' = ("Arial, Helvetica, Helv",18pt,Bold Italic)
 'StrongFont' = ("Helvetica, Helv",16pt,Bold)
 'EmphasisFont' = ("Helvetica, Helv",14pt,Italic)
 'FixedEmphasisFont' = ("Courier",12pt,Italic)
 'FixedStrongFont' = ("Courier",12pt,Bold)
 'FixedHeadingFont' = ("Courier",12pt)
 'BatchFixedFont' = ("SAS Monospace, Helv",12pt)
 'FixedFont' = ("Courier",12pt)
 'headingEmphasisFont' = ("Helvetica, Helv",16pt,Bold Italic)
 'headingFont' = ("Helvetica, Helv",10pt, Medium)
 'docFont' = ("Arial, Helvetica, Helv",10pt, Medium)
 /*1) Add Three new font aliases*/
 "systemTitleFont"=("Arial, Helvetica, Helv", 20pt,Bold)
 "systemFootnoteFont"=("Arial, Helvetica, Helv", 16pt,Bold)
 "tableBodyFont"=("Arial, Helvetica, Helv", 8pt, Medium);
/* Color changes */
replace color_list
'Change color palette to something prettier' /
 'fgB2' = cx0066AA
 'fgB1' = cx004488
 'fgA4' = cxAAFFAA
 'bgA4' = cx880000
 'bgA3' = cxFFFFFF
 'fgA2' = cxFFFFFF
 'bgA2' = cx000099
 'fgA1' = cx000000
 'bgA1' = cx000000
 'fgA' = cx000000
 'bgA' = cxCCCCFF
 'blight' = red
 'bdark' = purple;

style RowHeader from Header
 'Change the default row fg/bg colors' /
 foreground = Color_list("fgA2")
 /*2) Notice how I avoid replacing the Colors Style
 element by referring directly to Color_list when
 I am making changes*/
 background = Color_list("bgA2")
 font=fonts("tableBodyFont");

style SystemTitle from TitlesAndFooters
 "Controls system title text." /
 font=fonts("systemTitleFont");
style SystemFooter from TitlesAndFooters
 "Controls system footer text." /
 font=fonts("systemFootnoteFont");
replace Data from Cell
 "Default style for data cells in columns." /
 foreground = color_list("fgA1")
 background = color_list("bgA3")
 /*3) Changing the Background color here would actually change the
 background color of the data cells */
 font=fonts("tableBodyFont");

/* Table & Cell changes */
replace Output from Container
 "Abstract. Controls basic output forms." /
 /*4) Changing the background here changes what
 color will show through the space between cells*/

 background = color_list('bdark')
 foreground = color_list('fgA2')
 rules = groups
 /*5) RULES= GROUPS puts a line between the header and table body

 FRAME=BOX puts a border around the whole table */
 frame = box
 cellpadding = 7
 cellspacing = 2
 /* 6) CELLSPACING bigger than zero allows the Table background to show
through between cells. Borderwidth sets the thickness of the outside border,
but not the rules. You can use CELLSPACING to make the RULES look wider
*/
 borderwidth = 4

/* 7) Finally, you can set a two color border by using BORDERCOLORLIGHT=
and BORDERCOLORDARK= together*/

 bordercolordark = color_list('bdark')
 bordercolorlight = color_list('blight');
end;
run;

ods html file="C:\temp\bordersnRules.html" style=bordersnrules;
proc print data=SAShelp.class (obs=5) noobs;
Title "Look my font is bigger";
footnote "Mine is too";
run;
ods html close;

Figure 5: Changing Table Borders and RULES with STYLE
templates

Other STYLE ELEMENTS

As I said before, the STYLES.DEFAULT template is over seven
pages long, so thus far, we have only scratched the surface of
what you can do with a STYLE TEMPLATE. I will present one
more example using STYLE templates to demonstrate how
complicated things can get. So far we have been looking only at
the main body file in our HTML output, but SAS can create a table
of contents and a frame file for your HTML files as well. Let’s add
a few more outputs and a Table of Contents to our HTML
document from before.

The relevant STYLE TEMPLATE code (add this to the code from
the previous example) is included below:

replace Contents from document
"Controls the Contents file." /
 bullet = "decimal"
 tagattr = " onload=""if (msie4 == 1)expandAll()"""
 pagebreakhtml = html('break')
 rightmargin = 8
 leftmargin = 8
 /* Color changes: Change the background color here to match the body file
 It would be nice if changing the foreground color here had an effect, but it
 is set further down the trail of inheritance*/

 - 6 -

 background=cxCCCCFF
 Foreground=Purple;
replace IndexItem from Container
 "Abstract. Controls list items and folders for Contents and Pages." /
 leftmargin = 6pt
 posthtml = html('posthtml flyover')
 prehtml = html('prehtml flyover bullet')
 listentryanchor = on
 bullet = NONE
 background = cxCCCCFF
 foreground = Purple;
 /* Color changes here don’t do it either*/
replace ContentFolder from IndexItem
 "Controls the generic folder definition in the Contents file." /
 listentryanchor = off
 foreground = purple;
 /* Color changes still don’t take effect*/
replace IndexProcName from Index
 "Abstract. Controls the proc name in the list files." /
 listentryanchor = off
 bullet = "decimal"
 posthtml = html('posthtml flyover')
 prehtml = html('prehtml flyover')
 posttext = text('suffix1')
 pretext = text('prefix1')
 foreground = purple;
 /* Finally get the Purple color I was looking for in the links*/

 replace ProcTitle from TitlesAndFooters
 "Controls procedure title text." /
 background = colors('proctitlebg')
 foreground = cxCCCCFF;
 /* PROC MEANS and PROC FREQ have extra system titles that I don’t want
 see, so set them to be the same color as the background (There is probably
 a better way to do this*/

ods html contents="C:\temp\Contents1.html" frame="C:\temp\frame1.html"
 file="C:\temp\bordersnRules.html" style=bordersnrules stylesheet ;
proc print data=SAShelp.class (obs=5) noobs;
run;
Proc means data=sashelp.class;
var weight height;
run;
Proc freq data=sashelp.class;
tables sex;
run;
ods html close;

Figure 6: Table of Contents modified by the code above to
look like the body file

This Example shows how the nesting caused by inheritance can
make modifying STYLE templates tricky, if we had left out any of
those CONTENTS file modifying STYLE elements, our output just
wouldn’t have looked quite right. But by following the layers of
inheritance in the STYLE template, you should, with the help of a
little trial and error, be able to modify the STYLE Templates to get
you close to what you want.

That’s about where we are now with our running example, we
have gotten the TABLE OF CONTENTS colors and fonts looking
pretty good, but personally I would prefer the actual text in the
TOC to be a little more descriptive. Do I have control over that??
You bet, but not from a STYLE template!!

TABLE Templates

To this point, we have only been talking about STYLE Templates,
but these only control the outward appearance of our output.
What if we want to change the layout of the output objects, or
maybe change a column header, the TABLE of CONTENTS label,
or to format a specific cell a certain way? For this we have to
modify TABLE TEMPLATES.

Almost every SAS procedure has a TABLE template attached to
it. In fact there are only four that don’t (PRINT, REPORT,
TABULATE and FREQ). How do we know which TABLE
TEMPLATES are used with which procedure output? We can find
this out by using ODS TRACE to tell us which tables are used to
create our output. Adding the statement ODS TRACE ON; before
our previous example results in the following information being
added to our log.

Output Added:

Name: Print
Label: Data Set SASHELP.CLASS
Data Name:
Path: Print.Print

Output Added:

Name: Summary
Label: Summary statistics
Template: base.summary
Path: Means.Summary

Output Added:

Name: OneWayFreqs
Label: One-Way Frequencies
Template: Base.Freq.OneWayFreqs
Path: Freq.Sex.OneWayFreqs

This provides two important pieces of information:

1. The TEMPLATE line for both PROC MEANS (middle
output) and PROC FREQ (bottom output) tell us where
to find the tables we want to modify.

2. The output for PROC PRINT is shown with no TABLE
TEMPLATE listed in the ODS TRACE output for this
procedure. Since the “shape” of the output from the
PRINT procedure (as well as REPORT, TABULATE
and a MULTI-WAY FREQ) can’t be “known” ahead of
time, it is impossible to have only one TABLE
TEMPLATE for these procedures.

OK, so from this information we know that the PROC MEANS
output is using the TABLE TEMPLATE Base.summary, and
PROC FREQ is using BASE.FREQ.ONEWAYFREQS. These
Templates are bound to their corresponding procedures by name,
that is, MEANS will always use BASE.SUMMARY. But where are
they located, and how do we modify them?

 - 7 -

We can modify the location of the Templates that ODS uses, and
tell SAS where we want to store new templates using the ODS
PATH statement. For example:

ods path work.mytemp(update)
 sasuser.templat(update)
 sashelp.tmplmst(read);

Much like the FMTSEARCH option, this sets up a list of
TEMPLATE stores in which SAS will look for both TABLE and
STYLE templates (and any other types of TEMPLATES as well).
In this example we are telling SAS to first look in the temporary
TEMPLATE store WORK.MYTEMP and then in the two
permanent TEMPLATE stores that we saw earlier,
SASUSER.TEMPLAT and SASHELP.TMPLMST. SAS will look
for templates in these TEMPLATE stores in the order they are
listed, and use the first one that it finds. Also, since we have
listed WORK.MYTEMP as the first TEMPLATE store with update
status, any new or modified templates we create will be stored
there by default. Finally, by setting SASHELP.TMPLMST to read
only, you can’t help but copy existing templates, and don’t have to
fear overwriting them.

So now that we know where to find existing TABLE templates,
and how to access new ones, how do we edit them? Another
reason PROC TEMPLATE is so misunderstood, is the fact that he
has a bit of a split personality. We have seen some of the quirks
of his STYLE template side, but things are quite different, yet just
as complicated, when dealing with his “TABLE Template
personality.” His TABLE template side has very different syntax
from the STYLE templates, as shown in TABLE 2 below:

STYLE Templates TABLE Templates

Starts with a
DEFINE STYLE

statement

Starts with either a
DEFINE TABLE or a

EDIT TABLE
statement

Has STYLE
elements that start
with a STYLE or

REPLACE
statement

HAS other DEFINE
statements that
describe TABLE

items (e.g. DEFINE
COLUMN, DEFINE

HEADER)
A STYLE element

can have many
attributes defined in

one statement
(ending with one

semicolon)

Each statement
within a Table Item

definition has its
own Semicolon

STYLE element
Attribute1=value
Attribute2=value;

Define Table Item;
Attribute1=value;
Attribute2=value;

End;
A REPLACE

element can have
many attributes
defined in one

statement (ending
with one semicolon)

Each statement
while editing a

TABLE ITEM has its
own Semicolon

REPLACE element

Attribute1=value
Attribute2=value;

EDIT Table Item;
Attribute1=value;
Attribute2=value;

End;
Table 2: Syntax differences between STYLE and TABLE
templates

BASIC syntax

If I were to propose a basic model for editing TABLE templates it
would be to:

1) Identify which template you need to edit using ODS
TRACE

2) Use the Template viewer to take a look at the current
structure of the template

3) Use syntax similar to that provided below to edit the
template

Proc template;
edit Name-of-template-to-edit;*1) Tell sas which template to edit;
column col1 col2 ... coln;*2) List the columns in the template;
 edit col1;*3) Edit each column as necessary;
 Header="header-text";
 format= formatname.;
 other TABLE template statements;
 end;
 edit OThercols;

 End;
Other Table template statements go here;*4) Add other Template modifiers
 here;
end;
run;

TABLE TEMPLATES: Changing a format in a calculated
column

One of the attributes set as part of a TABLE template is the
format for a calculated column, such as the Frequency count in
PROC FREQ. We can change the format of a dataset variable in
PROC FREQ using the format statement, but in order to change
the format of a calculated variable, we will have to change the
TABLE template. Recall from our adventures with ODS TRACE
that the TABLE template for a One-way Frequency table is
BASE.FREQ.ONEWAYLIST. If you open it up in View Templates
you will see (minus the comments I have added to describe the
template:

proc template;
 define table Base.Freq.OneWayFreqs;
 *1) Sets up inheritance from the table defined below;
 parent = Base.Freq.OneWayList;
 notes "One-Way Frequency table";
 end;
 define table Base.Freq.OneWayList;
 notes "Parent for One-Way Frequency table and LIST table";
 dynamic page needlines plabel varlabel lw varjust gluef gluep;
 column Line FVariable Variable FListVariable ListVariable Frequency
 TestFrequency Percent TestPercent CumFrequency CumPercent;
 *2) Column statement lists all the columns that are defined below;

 header h1;
 translate _val_=._ into "";
 define h1;
 text varlabel;
 space = 1;
 split = "";
 spill_margin;
 highlight;
 end;
 define Line;
 header = "Line";
 format_ndec = 0;
 format_width = lw;
 just = c;
 style = RowHeader;
 id;
 end;
 define FVariable;
 just = varjust;
 style = RowHeader;
 id;
 generic;
 end;
 define Variable;

 - 8 -

 print = OFF;
 generic;
 end;
 define FListVariable;
 just = varjust;
 style = RowHeader;
 generic;
 end;
 define ListVariable;
 print = OFF;
 generic;
 end;
 define Frequency;
 *3) The first column we are interested in, this is the count variable in the
 frequency table. It’s default format is best8. but we will change that to
 5.2 in a moment;
 header = "Frequency";
 glue = gluef;
 format = BEST8.;
 just = c;
 end;
 define TestFrequency;
 header = "; Test ;Frequency;";
 glue = 4;
 format = BEST8.;
 just = c;
 end;
 define Percent;
 *4) Take note of the Percent column as well, we might as well give them the
same format;
 header = "; Percent;";
 glue = gluep;
 format = 6.2;
 just = c;
 end;
 define TestPercent;
 header = "; Test; Percent;";
 glue = 3;
 format = 6.2;
 just = c;
 end;
 define CumFrequency;
 header = ";Cumulative; Frequency;";
 glue = 4;
 format = BEST8.;
 just = c;
 end;
 define CumPercent;
 header = ";Cumulative; Percent;";
 format = 6.2;
 just = c;
 end;
 *5) the attributes below are for the TABLE definition, we will add one in the
 next example;
 required_space = needlines;
 print_headers = plabel;
 newpage = page;
 underline;
 use_name;
 end;
run;

As you can see the TABLE templates can be a little long
(although they are nothing compared to STYLES.DEFAULT).
However, editing a TABLE template is very simple because we
only have to type in settings for the attributes we are going to
change. So in our case we want to change the formats for the
Frequency column and the Percent column to both be 5.2. This
means we have merely to edit BASE.FREQ.ONEWAYFREQS
and change the formats in those two columns. That can be done
like so:

proc template;
edit base.freq.onewayfreqs;

define Frequency;
 header = "Frequency";
 just = c;
 format = 5.2;
 glue = gluef;
 end;
define Percent;
 header = ";Percent";
 just = c;
 format = 5.2;
 glue = gluef;
 end;
end;
run;

To make this more dynamic, we can set the formats to MACRO
variable values:

proc template;
edit base.freq.onewayfreqs;
Mvar freqfmt perfmt; *The MVAR statement defines variables to be used as
Macro variables;
define Frequency;
 header = "Frequency";
 just = c;
 format = freqfmt; *Notice, no Ampersand!;
 glue = gluef;
 end;
define Percent;
 header = ";Percent";
 just = c;
 format = perfmt;
 glue = gluef;
 end;
end;
run;

And then set these with %LET Statements before our PROC
FREQ:

data test;
input cat $ oth $ count;
datalines;
a c 12345678912
b d 34567891234
;
run;

%LET freqfmt=Z20.2; %LET PERfmt=best4.;
ods pdf file="C:\temp\freqy formats.pdf" style=bordersNrules;
proc freq data=test;
tables cat;
weight count;
run;
ods pdf close;

Figure 7: Changing the formats for columns calculated by
PROC FREQ

As you can see, this allows you a great deal of flexibility in
formatting the values of columns calculated by the procedure.

TABLE TEMPLATES: Modifying Bookmarks, PROC MEANS
and PROC FREQ

 - 9 -

This next quick example modifies an attribute of the TABLE itself
(rather than an attribute of a specific column). We learned how to
modify the colors of the TABLE of CONTENTS text using STYLE
Templates, but we will now modify a TABLE template attribute to
change the actual text that appears in the TOC. Again from our
ODS TRACE information we know the templates associated with
PROC MEANS and PROC FREQ are BASE.SUMMARY and
BASE.FREQ.ONEWAYFREQS respectively. Once we have
identified the TABLE TEMPLATES we wish to modify we can do
so using PROC TEMPLATE. In this example I use the MACRO
variable MYLABEL to set the CONTENTS_LABEL attribute for
both TABLES, we will see why in a moment.

proc template;
edit Base.Freq.Onewayfreqs ;
 mvar mylabel;
 contents_label= mylabel;
end;

edit base.summary ;
 mvar mylabel;
 contents_label = mylabel;
end;

run;

We can now use the MACRO variable MYLABEL to set the labels
in our bookmarks.

ods pdf file="C:\Your Path\Change All the bookmark labels (except one).pdf"
style=mynewstyle;

ods proclabel "Listing of Sasuser.diabetes data";
proc print data=sasuser.diabetes (obs=5) contents="Only the first 5
observations";
var id age sex fastgluc;
run;
ods proclabel "Fasting Glucose and Post challenge glucose Statistics";
%let mylabel=Mean Median Min and Max;
Proc means data=sasuser.diabetes n mean median min max;
var fastgluc postgluc;
run;

ods proclabel "Distribution of gender, SAS diabetes data";
%let mylabel=Percentage Male and Female;
Proc freq data=sasuser.diabetes ;
tables sex;
run;
ods pdf close;

Figure 8: Changes to almost all the bookmarks, after
modifying the corresponding TABLE TEMPLATES

Table Templates: Changing the STRUCTURE of an output
table

Until now we have still only really changed the formatting of our
output, using both TABLE templates and STYLE templates to do
so. In my last example, I will modify the structure of an output
table by modifying its TABLE template. For this example I will use
the PROC REG procedure, and the ‘FITNESS’ data set that SAS
uses with this procedure. The data step to generate this dataset
can be found with the PROC REG documentation.

First let’s run a regression model on these data and take a look at
the default parameter estimates table, to see where we are
starting from:

ods select ParameterEstimates;
ods html file='C:\temp\Regbefore.html' style=bordersnrules;
proc reg data=fitness;
 model Oxygen=Age Weight RunTime RunPulse RestPulse MaxPulse/clb;
 run;
 quit;
ods html close;

Just in case you are not familiar with this code, the ODS SELECT
statement tells SAS to send only the Paramenter Estimates table
to the HTML file, and in PROC REG the CLB option on the
MODEL statement gives the 95% confidence limits for the
parameter estimates.

This code produces the output below after applying our
Bordersnrules STYLE template:

Figure 9: Default structure of the Parameter Estimates table
for PROC REG
This, I think, looks pretty good, but your boss isn’t quite as
convinced. He thinks the table is too wide, and would like you to:

1) Stack the 95% Confidence Limits columns one on top
of the other

2) Place the T Value over the top of the Probability of T
(PROB >|t|) and change the header to Tvalue (Prob T)

3) Put Paraentheses around the probability value
4) Change the header of the Standard Error column to

STD Error
5) Find a way to highlight the significant probability values
6) Get rid of some of those decimal places, no estimate

has that much precision

Of course, after reading this paper, your reaction will be, what,
that’s it, come on, you can do better than that!!! ;-)

Let’s look at the PROC TEMPLATE code that does all these
things, and explain what’s going on:

proc template;

edit stat.reg.parameterestimates; *1) Do you know how we got this?;

 - 10 -

column variable Estimate StdErr tValue Probt (LowerCl UpperCL) ;
*2) Columns we want in the table, the parens are one way to get stacking;

 edit clhead;
 *3) Modify the Confidence limits Header to make it tighter
 The first character in a header is the split character, so
 We are using ‘#’ to divide the header over 3 lines.
 Start and end set up a spanning header, not really necessary

 Since we will be stacking the columns, but lets leave it the way
 the default is set up;

 Text "#95%#Confidence#Limits";
 start = lowercl;
 end = uppercl;
 End;

 edit tvalue;
 header = "#T Value";
 merge; ; *4) Merges Tvalue column with the column to its right,
 another way to stack columns;

 format=4.2; *5) Gets rid of some decimal places;

 end;

 edit probt;
 header = "#Tvalue #(Prob T)";
 translate _val_ into "#("||put(_val_,4.2)||")";

*6) Translate takes the VALue of PROBT and puts parens around it
and a split character in front to push it to a new line when it merges
with Tvalue;

text_split="#"; *7) Sets the same Split for the cell value as for the
 header;

 cellstyle _VAL_ le .05 as {background=red foreground=white f
 font_weight=bold};

*8) The CELLSTYLE attribute allows VALue specific formatting of
cells. In this case we want to change the background of significant
values to red and set their foreground to white;

 format= best8.; *9) This format needs to be longer to accommodate
 the parentheses being added to the value;
 end;

edit estimate;
 format = 5.2;
 end;

edit stderr;
 header = "#Std#Error";
 format = 5.2;
 end;

*10) Don’t forget to fix the STD ERROR header and the other
formats for the decimal places;

edit uppercl;

 format=5.2;
 end;

edit lowercl;
 format=5.2;

 end;
end;
run;

Figure 10: Modified Parameter Estimates Table

Conclusions

I hope this interview with PROC TEMPLATE has taught you a
little more about him, and let you see that he is really not that bad
of a guy. Sure he ma seem scary and intimidating at first, and he
may not make a whole lot of sense, but when you get to know
him, I am pretty sure you will really like him!! Be patient with him
and, like most other friendly SAS procedures, he will open up to
you. I trust that you will become very good friends. Feel free to
contact me if you need a relationship counselor at any point along
the way!!

References

SAS Institute, Inc. (1999) The complete guide to the SAS Output
Delivery System, Version 8. Cary, NC. SAS Institute, Inc.
Particularly the Chapter on PROC TEMPLATE

SAS Institute, Inc. (2002) Advanced Output Delivery System
Topics Course Notes. SAS Institute, Inc. Cary, NC

Schellenberger, Brian (2002) V8+ ODS PRINTER FAQ
http://www.sas.com/rnd/base/topics/odsprinter/faq.html
(December, 2002)

Haworth, Lauren SAS ® with Style: Creating your own Style
Template. Proceedings of the Twenty-Seventh Annual SAS
Users Group Conference. (March 2002).
http://www2.sas.com/proceedings/sugi27/p186-27.pdf (December
2002)

Contact Information:
Kevin P. Delaney MPH
Northrop-Grumman Mission Systems
Atlanta, GA
KDelaney@cdc.gov

SAS and all other SAS Institute Inc. product or service names are
registered trademarks or trademarks of SAS Institute Inc. in the
USA and other countries. ® indicates USA registration.
Other brand and product names are registered trademarks or
trademarks of their respective companies.

